1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-01 04:10:18 +02:00
guile/libguile/lightning/lightening/x86.c
2019-04-03 13:59:33 +02:00

832 lines
25 KiB
C

/*
* Copyright (C) 2012-2019 Free Software Foundation, Inc.
*
* This file is part of GNU lightning.
*
* GNU lightning is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU lightning is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* Authors:
* Paulo Cesar Pereira de Andrade
*/
#if __X32
# define jit_arg_reg_p(i) 0
# define jit_arg_f_reg_p(i) 0
# define stack_framesize 20
# define stack_adjust 12
# define CVT_OFFSET -12
# define REAL_WORDSIZE 4
# define va_gp_increment 4
# define va_fp_increment 8
#else
# if __CYGWIN__
# define jit_arg_reg_p(i) ((i) >= 0 && (i) < 4)
# define jit_arg_f_reg_p(i) jit_arg_reg_p(i)
# define stack_framesize 152
# define va_fp_increment 8
# else
# define jit_arg_reg_p(i) ((i) >= 0 && (i) < 6)
# define jit_arg_f_reg_p(i) ((i) >= 0 && (i) < 8)
# define stack_framesize 56
# define first_gp_argument rdi
# define first_gp_offset offsetof(jit_va_list_t, rdi)
# define first_gp_from_offset(gp) ((gp) / 8)
# define last_gp_argument r9
# define va_gp_max_offset \
(offsetof(jit_va_list_t, r9) - offsetof(jit_va_list_t, rdi) + 8)
# define first_fp_argument xmm0
# define first_fp_offset offsetof(jit_va_list_t, xmm0)
# define last_fp_argument xmm7
# define va_fp_max_offset \
(offsetof(jit_va_list_t, xmm7) - offsetof(jit_va_list_t, rdi) + 16)
# define va_fp_increment 16
# define first_fp_from_offset(fp) (((fp) - va_gp_max_offset) / 16)
# endif
# define va_gp_increment 8
# define stack_adjust 8
# define CVT_OFFSET -8
# define REAL_WORDSIZE 8
#endif
/*
* Types
*/
#if __X32 || __CYGWIN__
typedef jit_pointer_t jit_va_list_t;
#else
typedef struct jit_va_list {
int32_t gpoff;
int32_t fpoff;
jit_pointer_t over;
jit_pointer_t save;
/* Declared explicitly as int64 for the x32 abi */
int64_t rdi;
int64_t rsi;
int64_t rdx;
int64_t rcx;
int64_t r8;
int64_t r9;
jit_float64_t xmm0;
jit_float64_t _up0;
jit_float64_t xmm1;
jit_float64_t _up1;
jit_float64_t xmm2;
jit_float64_t _up2;
jit_float64_t xmm3;
jit_float64_t _up3;
jit_float64_t xmm4;
jit_float64_t _up4;
jit_float64_t xmm5;
jit_float64_t _up5;
jit_float64_t xmm6;
jit_float64_t _up6;
jit_float64_t xmm7;
jit_float64_t _up7;
} jit_va_list_t;
#endif
jit_cpu_t jit_cpu;
static const jit_register_t _rvs[] = {
#if __X32
{ rc(gpr) | rc(rg8) | 0, "%eax" },
{ rc(gpr) | rc(rg8) | 1, "%ecx" },
{ rc(gpr) | rc(rg8) | 2, "%edx" },
{ rc(sav) | rc(rg8) | rc(gpr) | 3, "%ebx" },
{ rc(sav) | rc(gpr) | 6, "%esi" },
{ rc(sav) | rc(gpr) | 7, "%edi" },
{ rc(sav) | 4, "%esp" },
{ rc(sav) | 5, "%ebp" },
{ rc(xpr) | rc(fpr) | 0, "%xmm0" },
{ rc(xpr) | rc(fpr) | 1, "%xmm1" },
{ rc(xpr) | rc(fpr) | 2, "%xmm2" },
{ rc(xpr) | rc(fpr) | 3, "%xmm3" },
{ rc(xpr) | rc(fpr) | 4, "%xmm4" },
{ rc(xpr) | rc(fpr) | 5, "%xmm5" },
{ rc(xpr) | rc(fpr) | 6, "%xmm6" },
{ rc(xpr) | rc(fpr) | 7, "%xmm7" },
#elif __CYGWIN__
{ rc(gpr) | rc(rg8) | 0, "%rax" },
{ rc(gpr) | rc(rg8) | rc(rg8) | 10, "%r10" },
{ rc(gpr) | rc(rg8) | rc(rg8) | 11, "%r11" },
{ rc(sav) | rc(rg8) | rc(gpr) | 3, "%rbx" },
{ rc(sav) | rc(gpr) | 7, "%rdi" },
{ rc(sav) | rc(gpr) | 6, "%rsi" },
{ rc(sav) | rc(gpr) | 12, "%r12" },
{ rc(sav) | rc(gpr) | 13, "%r13" },
{ rc(sav) | rc(gpr) | 14, "%r14" },
{ rc(sav) | rc(gpr) | 15, "%r15" },
{ rc(arg) | rc(rg8) | rc(gpr) | 9, "%r9" },
{ rc(arg) | rc(rg8) | rc(gpr) | 8, "%r8" },
{ rc(arg) | rc(rg8) | rc(gpr) | 2, "%rdx" },
{ rc(arg) | rc(rg8) | rc(gpr) | 1, "%rcx" },
{ rc(sav) | 4, "%rsp" },
{ rc(sav) | 5, "%rbp" },
{ rc(xpr) | rc(fpr) | 4, "%xmm4" },
{ rc(xpr) | rc(fpr) | 5, "%xmm5" },
{ rc(sav) | rc(xpr) | rc(fpr) | 6, "%xmm6" },
{ rc(sav) | rc(xpr) | rc(fpr) | 7, "%xmm7" },
{ rc(sav) | rc(xpr) | rc(fpr) | 8, "%xmm8" },
{ rc(sav) | rc(xpr) | rc(fpr) | 9, "%xmm9" },
{ rc(sav) | rc(xpr) | rc(fpr) | 10, "%xmm10" },
{ rc(sav) | rc(xpr) | rc(fpr) | 11, "%xmm11" },
{ rc(sav) | rc(xpr) | rc(fpr) | 12, "%xmm12" },
{ rc(sav) | rc(xpr) | rc(fpr) | 13, "%xmm13" },
{ rc(sav) | rc(xpr) | rc(fpr) | 14, "%xmm14" },
{ rc(sav) | rc(xpr) | rc(fpr) | 15, "%xmm15" },
{ rc(xpr) | rc(arg) | rc(fpr) | 3, "%xmm3" },
{ rc(xpr) | rc(arg) | rc(fpr) | 2, "%xmm2" },
{ rc(xpr) | rc(arg) | rc(fpr) | 1, "%xmm1" },
{ rc(xpr) | rc(arg) | rc(fpr) | 0, "%xmm0" },
#else
/* %rax is a pseudo flag argument for varargs functions */
{ rc(arg) | rc(gpr) | rc(rg8) | 0, "%rax" },
{ rc(gpr) | rc(rg8) | 10, "%r10" },
{ rc(gpr) | rc(rg8) | 11, "%r11" },
{ rc(gpr) | rc(rg8) | 12, "%r12" },
{ rc(sav) | rc(rg8) | rc(gpr) | 3, "%rbx" },
{ rc(sav) | rc(rg8) | rc(gpr) | 13, "%r13" },
{ rc(sav) | rc(rg8) | rc(gpr) | 14, "%r14" },
{ rc(sav) | rc(rg8) | rc(gpr) | 15, "%r15" },
{ rc(arg) | rc(rg8) | rc(gpr) | 9, "%r9" },
{ rc(arg) | rc(rg8) | rc(gpr) | 8, "%r8" },
{ rc(arg) | rc(rg8) | rc(gpr) | 1, "%rcx" },
{ rc(arg) | rc(rg8) | rc(gpr) | 2, "%rdx" },
{ rc(arg) | rc(rg8) | rc(gpr) | 6, "%rsi" },
{ rc(arg) | rc(rg8) | rc(gpr) | 7, "%rdi" },
{ rc(sav) | 4, "%rsp" },
{ rc(sav) | 5, "%rbp" },
{ rc(xpr) | rc(fpr) | 8, "%xmm8" },
{ rc(xpr) | rc(fpr) | 9, "%xmm9" },
{ rc(xpr) | rc(fpr) | 10, "%xmm10" },
{ rc(xpr) | rc(fpr) | 11, "%xmm11" },
{ rc(xpr) | rc(fpr) | 12, "%xmm12" },
{ rc(xpr) | rc(fpr) | 13, "%xmm13" },
{ rc(xpr) | rc(fpr) | 14, "%xmm14" },
{ rc(xpr) | rc(fpr) | 15, "%xmm15" },
{ rc(xpr) | rc(arg) | rc(fpr) | 7, "%xmm7" },
{ rc(xpr) | rc(arg) | rc(fpr) | 6, "%xmm6" },
{ rc(xpr) | rc(arg) | rc(fpr) | 5, "%xmm5" },
{ rc(xpr) | rc(arg) | rc(fpr) | 4, "%xmm4" },
{ rc(xpr) | rc(arg) | rc(fpr) | 3, "%xmm3" },
{ rc(xpr) | rc(arg) | rc(fpr) | 2, "%xmm2" },
{ rc(xpr) | rc(arg) | rc(fpr) | 1, "%xmm1" },
{ rc(xpr) | rc(arg) | rc(fpr) | 0, "%xmm0" },
#endif
{ _NOREG, "<none>" },
};
#include "x86-cpu.c"
#include "x86-sse.c"
jit_bool_t
jit_get_cpu(void)
{
union {
struct {
uint32_t sse3 : 1;
uint32_t pclmulqdq : 1;
uint32_t dtes64 : 1; /* amd reserved */
uint32_t monitor : 1;
uint32_t ds_cpl : 1; /* amd reserved */
uint32_t vmx : 1; /* amd reserved */
uint32_t smx : 1; /* amd reserved */
uint32_t est : 1; /* amd reserved */
uint32_t tm2 : 1; /* amd reserved */
uint32_t ssse3 : 1;
uint32_t cntx_id : 1; /* amd reserved */
uint32_t __reserved0 : 1;
uint32_t fma : 1;
uint32_t cmpxchg16b : 1;
uint32_t xtpr : 1; /* amd reserved */
uint32_t pdcm : 1; /* amd reserved */
uint32_t __reserved1 : 1;
uint32_t pcid : 1; /* amd reserved */
uint32_t dca : 1; /* amd reserved */
uint32_t sse4_1 : 1;
uint32_t sse4_2 : 1;
uint32_t x2apic : 1; /* amd reserved */
uint32_t movbe : 1; /* amd reserved */
uint32_t popcnt : 1;
uint32_t tsc : 1; /* amd reserved */
uint32_t aes : 1;
uint32_t xsave : 1;
uint32_t osxsave : 1;
uint32_t avx : 1;
uint32_t __reserved2 : 1; /* amd F16C */
uint32_t __reserved3 : 1;
uint32_t __alwayszero : 1; /* amd RAZ */
} bits;
jit_uword_t cpuid;
} ecx;
union {
struct {
uint32_t fpu : 1;
uint32_t vme : 1;
uint32_t de : 1;
uint32_t pse : 1;
uint32_t tsc : 1;
uint32_t msr : 1;
uint32_t pae : 1;
uint32_t mce : 1;
uint32_t cmpxchg8b : 1;
uint32_t apic : 1;
uint32_t __reserved0 : 1;
uint32_t sep : 1;
uint32_t mtrr : 1;
uint32_t pge : 1;
uint32_t mca : 1;
uint32_t cmov : 1;
uint32_t pat : 1;
uint32_t pse36 : 1;
uint32_t psn : 1; /* amd reserved */
uint32_t clfsh : 1;
uint32_t __reserved1 : 1;
uint32_t ds : 1; /* amd reserved */
uint32_t acpi : 1; /* amd reserved */
uint32_t mmx : 1;
uint32_t fxsr : 1;
uint32_t sse : 1;
uint32_t sse2 : 1;
uint32_t ss : 1; /* amd reserved */
uint32_t htt : 1;
uint32_t tm : 1; /* amd reserved */
uint32_t __reserved2 : 1;
uint32_t pbe : 1; /* amd reserved */
} bits;
jit_uword_t cpuid;
} edx;
#if __X32
int ac, flags;
#endif
jit_uword_t eax, ebx;
#if __X32
/* adapted from glibc __sysconf */
__asm__ volatile ("pushfl;\n\t"
"popl %0;\n\t"
"movl $0x240000, %1;\n\t"
"xorl %0, %1;\n\t"
"pushl %1;\n\t"
"popfl;\n\t"
"pushfl;\n\t"
"popl %1;\n\t"
"xorl %0, %1;\n\t"
"pushl %0;\n\t"
"popfl"
: "=r" (flags), "=r" (ac));
/* i386 or i486 without cpuid */
if ((ac & (1 << 21)) == 0)
/* probably without x87 as well */
return false;
#endif
/* query %eax = 1 function */
__asm__ volatile (
#if __X32 || __X64_32
"xchgl %%ebx, %1; cpuid; xchgl %%ebx, %1"
#else
"xchgq %%rbx, %1; cpuid; xchgq %%rbx, %1"
#endif
: "=a" (eax), "=r" (ebx),
"=c" (ecx.cpuid), "=d" (edx.cpuid)
: "0" (1));
jit_cpu.fpu = edx.bits.fpu;
jit_cpu.cmpxchg8b = edx.bits.cmpxchg8b;
jit_cpu.cmov = edx.bits.cmov;
jit_cpu.mmx = edx.bits.mmx;
jit_cpu.sse = edx.bits.sse;
jit_cpu.sse2 = edx.bits.sse2;
jit_cpu.sse3 = ecx.bits.sse3;
jit_cpu.pclmulqdq = ecx.bits.pclmulqdq;
jit_cpu.ssse3 = ecx.bits.ssse3;
jit_cpu.fma = ecx.bits.fma;
jit_cpu.cmpxchg16b = ecx.bits.cmpxchg16b;
jit_cpu.sse4_1 = ecx.bits.sse4_1;
jit_cpu.sse4_2 = ecx.bits.sse4_2;
jit_cpu.movbe = ecx.bits.movbe;
jit_cpu.popcnt = ecx.bits.popcnt;
jit_cpu.aes = ecx.bits.aes;
jit_cpu.avx = ecx.bits.avx;
/* query %eax = 0x80000001 function */
__asm__ volatile (
#if __X64
# if __X64_32
"xchgl %%ebx, %1; cpuid; xchgl %%ebx, %1"
# else
"xchgq %%rbx, %1; cpuid; xchgq %%rbx, %1"
# endif
: "=a" (eax), "=r" (ebx),
"=c" (ecx.cpuid), "=d" (edx.cpuid)
: "0" (0x80000001));
jit_cpu.lahf = ecx.cpuid & 1;
#endif
return jit_cpu.sse2;
}
jit_bool_t
jit_init(jit_state_t *_jit)
{
return jit_cpu.sse2;
}
void
jit_epilog(jit_state_t *_jit)
{
/* TODO: Restore registers. */
}
static jit_bool_t
is_fpr_arg(jit_arg_abi_t arg)
{
switch (arg)
{
case JIT_ARG_ABI_UINT8:
case JIT_ARG_ABI_INT8:
case JIT_ARG_ABI_UINT16:
case JIT_ARG_ABI_INT16:
case JIT_ARG_ABI_UINT32:
case JIT_ARG_ABI_INT32:
case JIT_ARG_ABI_UINT64:
case JIT_ARG_ABI_INT64:
case JIT_ARG_ABI_POINTER:
return 0;
case JIT_ARG_ABI_FLOAT:
case JIT_ARG_ABI_DOUBLE:
return 1;
default:
abort();
}
}
static jit_bool_t
is_gpr_arg(jit_arg_abi_t arg)
{
return !is_fpr_arg(arg);
}
static const jit_gpr_t abi_gpr_args[] = {
#if __X32
/* No GPRs in args. */
#elif __CYGWIN__
JIT_GPR(_RCX), JIT_GPR(_RDX), JIT_GPR(_R8), JIT_GPR(_R9)
#else
JIT_GPR(_RDI), JIT_GPR(_RSI), JIT_GPR(_RDX), JIT_GPR(_RCX), JIT_GPR(_R8), JIT_GPR(_R9)
#endif
};
static const jit_fpr_t abi_fpr_args[] = {
#if __X32
/* No FPRs in args. */
#elif __CYGWIN__
JIT_FPR(_XMM0), JIT_FPR(_XMM1), JIT_FPR(_XMM2), JIT_FPR(_XMM3)
#else
JIT_FPR(_XMM0), JIT_FPR(_XMM1), JIT_FPR(_XMM2), JIT_FPR(_XMM3), JIT_FPR(_XMM4), JIT_FPR(_XMM5), JIT_FPR(_XMM6), JIT_FPR(_XMM7)
#endif
};
static const int abi_gpr_arg_count = sizeof(abi_gpr_args) / sizeof(abi_gpr_args[0]);
static const int abi_fpr_arg_count = sizeof(abi_fpr_args) / sizeof(abi_fpr_args[0]);
struct abi_arg_iterator
{
const jit_arg_abi_t *abi;
size_t argc;
size_t arg_idx;
size_t gpr_idx;
size_t fpr_idx;
size_t stack_size;
};
static void
next_abi_arg(struct abi_arg_iterator *iter, jit_arg_t *arg)
{
ASSERT(iter->arg_idx < iter->argc);
jit_arg_abi_t abi = iter->abi[iter->arg_idx];
if (is_gpr_arg(abi)) {
if (iter->gpr_idx < abi_gpr_arg_count) {
arg->kind = JIT_ARG_LOC_GPR;
arg->loc.gpr = abi_gpr_args[iter->gpr_idx++];
#ifdef __CYGWIN__
iter->fpr_idx++;
#endif
} else {
abort();
}
} else {
ASSERT(is_fpr_arg(abi));
if (iter->fpr_idx < abi_fpr_arg_count) {
arg->kind = JIT_ARG_LOC_FPR;
arg->loc.fpr = abi_fpr_args[iter->fpr_idx++];
#ifdef __CYGWIN__
iter->gpr_idx++;
#endif
} else {
abort();
}
}
iter->arg_idx++;
}
static void
abi_gpr_to_mem(jit_state_t *_jit, jit_arg_abi_t abi,
jit_gpr_t src, jit_gpr_t base, ptrdiff_t offset)
{
switch (abi) {
case JIT_ARG_ABI_UINT8:
case JIT_ARG_ABI_INT8:
jit_stxi_c(_jit, offset, base, src);
break;
case JIT_ARG_ABI_UINT16:
case JIT_ARG_ABI_INT16:
jit_stxi_s(_jit, offset, base, src);
break;
case JIT_ARG_ABI_UINT32:
case JIT_ARG_ABI_INT32:
#if __WORDSIZE == 32
case JIT_ARG_ABI_POINTER:
#endif
jit_stxi_i(_jit, offset, base, src);
break;
#if __WORDSIZE == 64
case JIT_ARG_ABI_UINT64:
case JIT_ARG_ABI_INT64:
case JIT_ARG_ABI_POINTER:
jit_stxi_l(_jit, offset, base, src);
break;
#endif
default:
abort();
}
}
static void
abi_fpr_to_mem(jit_state_t *_jit, jit_arg_abi_t abi,
jit_fpr_t src, jit_gpr_t base, ptrdiff_t offset)
{
switch (abi) {
case JIT_ARG_ABI_FLOAT:
jit_stxi_f(_jit, offset, base, src);
break;
case JIT_ARG_ABI_DOUBLE:
jit_stxi_d(_jit, offset, base, src);
break;
default:
abort();
}
}
static void
abi_mem_to_gpr(jit_state_t *_jit, jit_arg_abi_t abi,
jit_gpr_t dst, jit_gpr_t base, ptrdiff_t offset)
{
switch (abi) {
case JIT_ARG_ABI_UINT8:
jit_ldxi_uc(_jit, dst, base, offset);
break;
case JIT_ARG_ABI_INT8:
jit_ldxi_c(_jit, dst, base, offset);
break;
case JIT_ARG_ABI_UINT16:
jit_ldxi_us(_jit, dst, base, offset);
break;
case JIT_ARG_ABI_INT16:
jit_ldxi_s(_jit, dst, base, offset);
break;
case JIT_ARG_ABI_UINT32:
jit_ldxi_ui(_jit, dst, base, offset);
break;
case JIT_ARG_ABI_INT32:
jit_ldxi_i(_jit, dst, base, offset);
break;
case JIT_ARG_ABI_UINT64:
jit_ldxi_l(_jit, dst, base, offset);
break;
case JIT_ARG_ABI_INT64:
jit_ldxi_l(_jit, dst, base, offset);
break;
case JIT_ARG_ABI_POINTER:
jit_ldxi_l(_jit, dst, base, offset);
break;
default:
abort();
}
}
static void
abi_mem_to_fpr(jit_state_t *_jit, jit_arg_abi_t abi,
jit_fpr_t dst, jit_gpr_t base, ptrdiff_t offset)
{
switch (abi) {
case JIT_ARG_ABI_FLOAT:
jit_ldxi_f(_jit, dst, base, offset);
break;
case JIT_ARG_ABI_DOUBLE:
jit_ldxi_d(_jit, dst, base, offset);
break;
default:
abort();
}
}
static void
store_mem_abi_arg(jit_state_t *_jit, jit_arg_abi_t abi,
jit_arg_t *arg, jit_gpr_t base, ptrdiff_t offset)
{
switch (arg->kind) {
case JIT_ARG_LOC_GPR:
abi_gpr_to_mem(_jit, abi, arg->loc.gpr, base, offset);
break;
case JIT_ARG_LOC_FPR:
abi_fpr_to_mem(_jit, abi, arg->loc.fpr, base, offset);
break;
case JIT_ARG_LOC_MEM:
if (is_gpr_arg(abi)) {
jit_gpr_t tmp = get_temp_gpr(_jit);
abi_mem_to_gpr(_jit, abi, tmp, arg->loc.mem.base, arg->loc.mem.offset);
abi_gpr_to_mem(_jit, abi, tmp, base, offset);
unget_temp_gpr(_jit);
} else {
jit_fpr_t tmp = get_temp_xpr(_jit);
abi_mem_to_fpr(_jit, abi, tmp, arg->loc.mem.base, arg->loc.mem.offset);
abi_fpr_to_mem(_jit, abi, tmp, base, offset);
unget_temp_xpr(_jit);
}
break;
default:
abort();
}
arg->kind = JIT_ARG_LOC_MEM;
arg->loc.mem.base = base;
arg->loc.mem.offset = offset;
}
static void
shuffle_gpr_arg(jit_state_t *_jit, jit_gpr_t dst, size_t argc,
jit_arg_t *args, size_t idx)
{
ASSERT(args[idx].kind == JIT_ARG_LOC_GPR);
if (rn(args[idx].loc.gpr) == rn(dst))
return;
/* Arg in a reg but it's not the right one. See if this reg
holds some other arg, and swap if so. */
for (size_t j=idx+1; j<argc; j++)
if (args[j].kind == JIT_ARG_LOC_GPR && rn(args[j].loc.gpr) == rn(dst))
{
xchgr(_jit, rn(args[idx].loc.gpr), rn(dst));
args[j].loc.gpr = args[idx].loc.gpr;
args[idx].loc.gpr = dst;
/* Could be this register holds a value for more than one argument;
update subsequent args if any. */
for (size_t k=j+1; k<argc; k++)
if (args[k].kind == JIT_ARG_LOC_GPR && rn(args[k].loc.gpr) == rn(dst))
args[k].loc.gpr = args[j].loc.gpr;
return;
}
/* Arg in reg, but it's not the right one, and the desired reg
is free. */
jit_movr(_jit, dst, args[idx].loc.gpr);
args[idx].loc.gpr = dst;
}
static void
shuffle_fpr_arg(jit_state_t *_jit, jit_fpr_t dst, size_t argc,
jit_arg_t *args, size_t idx)
{
ASSERT(args[idx].kind == JIT_ARG_LOC_FPR);
if (rn(args[idx].loc.fpr) == rn(dst))
return;
/* Arg in a reg but it's not the right one. See if this reg
holds some other arg, and swap if so. */
for (size_t j=idx+1; j<argc; j++)
if (args[j].kind == JIT_ARG_LOC_FPR && rn(args[j].loc.fpr) == rn(dst))
{
jit_fpr_t tmp = get_temp_xpr(_jit);
jit_movr_d (_jit, tmp, args[idx].loc.fpr);
jit_movr_d (_jit, args[idx].loc.fpr, dst);
jit_movr_d (_jit, dst, tmp);
unget_temp_xpr(_jit);
args[j].loc.fpr = args[idx].loc.fpr;
args[idx].loc.fpr = dst;
/* Could be this register holds a value for more than one argument;
update subsequent args if any. */
for (size_t k=j+1; k<argc; k++)
if (args[k].kind == JIT_ARG_LOC_FPR && rn(args[k].loc.fpr) == rn(dst))
args[k].loc.fpr = args[j].loc.fpr;
return;
}
/* Arg in reg, but it's not the right one, and the desired reg
is free. */
jit_movr_d(_jit, dst, args[idx].loc.fpr);
args[idx].loc.fpr = dst;
}
static void
reset_abi_arg_iterator(struct abi_arg_iterator *iter, size_t argc,
const jit_arg_abi_t *abi)
{
memset(iter, 0, sizeof *iter);
iter->argc = argc;
iter->abi = abi;
}
static void
prepare_args(jit_state_t *_jit, size_t argc, const jit_arg_abi_t abi[],
jit_arg_t args[])
{
jit_arg_t scratch;
struct abi_arg_iterator iter;
// Compute stack arg size.
reset_abi_arg_iterator(&iter, argc, abi);
for (size_t i = 0; i < argc; i++)
next_abi_arg(&iter, &scratch);
// Put all ABI memory arguments in place. We do this first because it might
// free up some registers.
if (iter.stack_size)
{
size_t stack_size = iter.stack_size;
subi(_jit, _RSP_REGNO, _RSP_REGNO, stack_size);
reset_abi_arg_iterator(&iter, argc, abi);
for (size_t i = 0; i < argc; i++) {
next_abi_arg(&iter, &scratch);
if (scratch.kind == JIT_ARG_LOC_MEM)
store_mem_abi_arg(_jit, abi[i], &args[i],
scratch.loc.mem.base, scratch.loc.mem.offset);
}
}
// We move on now to the ABI register arguments. All args whose values are in
// registers are ABI register arguments, but they might not be the right
// register for the correponding ABI argument. Note that there may be ABI
// register arguments whose values are still in memory; we will load them
// later.
reset_abi_arg_iterator(&iter, argc, abi);
for (size_t i = 0; i < argc; i++)
{
next_abi_arg(&iter, &scratch);
switch (scratch.kind) {
case JIT_ARG_LOC_GPR:
if (args[i].kind == JIT_ARG_LOC_GPR)
shuffle_gpr_arg(_jit, scratch.loc.gpr, argc, args, i);
break;
case JIT_ARG_LOC_FPR:
if (args[i].kind == JIT_ARG_LOC_FPR)
shuffle_fpr_arg(_jit, scratch.loc.fpr, argc, args, i);
break;
default:
break;
}
}
// The only thing that's left is ABI register arguments whose values are still
// in memory; load them now.
reset_abi_arg_iterator(&iter, argc, abi);
for (size_t i = 0; i < argc; i++)
{
next_abi_arg(&iter, &scratch);
switch (scratch.kind) {
case JIT_ARG_LOC_GPR:
if (args[i].kind == JIT_ARG_LOC_MEM) {
abi_mem_to_gpr(_jit, abi[i], scratch.loc.gpr, args[i].loc.mem.base,
args[i].loc.mem.offset);
args[i].kind = JIT_ARG_LOC_GPR;
args[i].loc.gpr = scratch.loc.gpr;
}
break;
case JIT_ARG_LOC_FPR:
if (args[i].kind == JIT_ARG_LOC_MEM) {
abi_mem_to_fpr(_jit, abi[i], scratch.loc.fpr, args[i].loc.mem.base,
args[i].loc.mem.offset);
args[i].kind = JIT_ARG_LOC_FPR;
args[i].loc.fpr = scratch.loc.fpr;
}
break;
default:
break;
}
}
}
static void
cleanup_stack_after_call(jit_state_t *_jit, size_t argc,
const jit_arg_abi_t abi[])
{
jit_arg_t scratch;
struct abi_arg_iterator iter;
// Compute stack arg size.
reset_abi_arg_iterator(&iter, argc, abi);
for (size_t i = 0; i < argc; i++)
next_abi_arg(&iter, &scratch);
if (iter.stack_size)
jit_addi(_jit, JIT_SP, JIT_SP, iter.stack_size);
}
void
jit_calli(jit_state_t *_jit, jit_pointer_t f,
size_t argc, const jit_arg_abi_t abi[], jit_arg_t args[])
{
prepare_args(_jit, argc, abi, args);
calli(_jit, (jit_word_t)f);
cleanup_stack_after_call(_jit, argc, abi);
}
void
jit_callr(jit_state_t *_jit, jit_gpr_t f,
size_t argc, const jit_arg_abi_t abi[], jit_arg_t args[])
{
prepare_args(_jit, argc, abi, args);
callr(_jit, rn(f));
cleanup_stack_after_call(_jit, argc, abi);
}
void
jit_receive(jit_state_t *_jit,
size_t argc, const jit_arg_abi_t abi[], jit_arg_t args[])
{
struct abi_arg_iterator iter;
reset_abi_arg_iterator(&iter, argc, abi);
for (size_t i = 0; i < argc; i++)
next_abi_arg(&iter, &args[i]);
}
void
jit_load_args(jit_state_t *_jit, size_t argc,
const jit_arg_abi_t abi[], jit_arg_t args[],
const jit_anyreg_t regs[])
{
/* First shuffle any arguments that are already in registers into
position. */
for (size_t i = 0; i < argc; i++) {
switch (args[i].kind) {
case JIT_ARG_LOC_IMM:
abort();
case JIT_ARG_LOC_GPR:
shuffle_gpr_arg(_jit, regs[i].gpr, argc, args, i);
break;
case JIT_ARG_LOC_FPR:
shuffle_fpr_arg(_jit, regs[i].fpr, argc, args, i);
break;
case JIT_ARG_LOC_MEM:
break;
default:
abort();
}
}
/* Now load spilled arguments from memory into registers. */
for (size_t i = 0; i < argc; i++) {
if (args[i].kind == JIT_ARG_LOC_MEM) {
if (is_gpr_arg(abi[i]))
abi_mem_to_gpr(_jit, abi[i], regs[i].gpr, args[i].loc.mem.base,
args[i].loc.mem.offset);
else
abi_mem_to_fpr(_jit, abi[i], regs[i].fpr, args[i].loc.mem.base,
args[i].loc.mem.offset);
}
}
}
void
jit_flush(void *fptr, void *tptr)
{
}
static void
jit_try_shorten(jit_state_t *_jit, jit_reloc_t reloc)
{
}