mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-05-13 17:20:21 +02:00
library. * module/Makefile.am: Add rnrs/arithmetic/6/fixnums.scm and rnrs/arithmetic/6/flonums.scm to RNRS_SOURCES. * module/rnrs/6/base.scm: (div-and-mod, div0, mod0, div0-and-mod0): New functions; this `div' implementation is not quite right, but we'll come back to it later. * module/rnrs/arithmetic/6/fixnums.scm: New file. * module/rnrs/arithmetic/6/flonums.scm: New file. * test-suite/Makefile.am: Add tests/r6rs-arithmetic-flonums.test to SCM_TESTS. * test-suite/tests/r6rs-arithmetic-flonums.test: New file.
216 lines
6.5 KiB
Scheme
216 lines
6.5 KiB
Scheme
;;; flonums.scm --- The R6RS flonums arithmetic library
|
||
|
||
;; Copyright (C) 2010 Free Software Foundation, Inc.
|
||
;;
|
||
;; This library is free software; you can redistribute it and/or
|
||
;; modify it under the terms of the GNU Lesser General Public
|
||
;; License as published by the Free Software Foundation; either
|
||
;; version 3 of the License, or (at your option) any later version.
|
||
;;
|
||
;; This library is distributed in the hope that it will be useful,
|
||
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
;; Lesser General Public License for more details.
|
||
;;
|
||
;; You should have received a copy of the GNU Lesser General Public
|
||
;; License along with this library; if not, write to the Free Software
|
||
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
||
|
||
(library (rnrs arithmetic flonums (6))
|
||
(export flonum?
|
||
real->flonum
|
||
|
||
fl=? fl<? fl<=? fl>? fl>=?
|
||
|
||
flinteger? flzero? flpositive? flnegative? flodd? fleven? flfinite?
|
||
flinfinite? flnan?
|
||
|
||
flmax flmin
|
||
|
||
fl+ fl* fl- fl/
|
||
|
||
flabs
|
||
|
||
fldiv-and-mod
|
||
fldiv
|
||
flmod
|
||
fldiv0-and-mod0
|
||
fldiv0
|
||
flmod0
|
||
|
||
flnumerator
|
||
fldenominator
|
||
|
||
flfloor flceiling fltruncate flround
|
||
|
||
flexp fllog flsin flcos fltan flacos flasin flatan
|
||
|
||
flsqrt flexpt
|
||
|
||
&no-infinities
|
||
make-no-infinities-violation
|
||
no-infinities-violation?
|
||
|
||
&no-nans
|
||
make-no-nans-violation
|
||
no-nans-violation?
|
||
|
||
fixnum->flonum)
|
||
(import (ice-9 optargs)
|
||
(only (guile) inf?)
|
||
(rnrs arithmetic fixnums (6))
|
||
(rnrs base (6))
|
||
(rnrs conditions (6))
|
||
(rnrs exceptions (6))
|
||
(rnrs lists (6))
|
||
(rnrs r5rs (6)))
|
||
|
||
(define (flonum? obj) (and (number? obj) (inexact? obj)))
|
||
(define (assert-flonum . args)
|
||
(or (for-all flonum? args) (raise (make-assertion-violation))))
|
||
(define (assert-iflonum . args)
|
||
(or (for-all (lambda (i) (and (flonum? i) (integer? i))) args)
|
||
(raise (make-assertion-violation))))
|
||
|
||
(define (real->flonum x)
|
||
(or (real? x) (raise (make-assertion-violation)))
|
||
(exact->inexact x))
|
||
|
||
(define (fl=? . args) (apply assert-flonum args) (apply = args))
|
||
(define (fl<? . args) (apply assert-flonum args) (apply < args))
|
||
(define (fl<=? . args) (apply assert-flonum args) (apply <= args))
|
||
(define (fl>? . args) (apply assert-flonum args) (apply > args))
|
||
(define (fl>=? . args) (apply assert-flonum args) (apply >= args))
|
||
|
||
(define (flinteger? fl) (assert-flonum fl) (integer? fl))
|
||
(define (flzero? fl) (assert-flonum fl) (zero? fl))
|
||
(define (flpositive? fl) (assert-flonum fl) (positive? fl))
|
||
(define (flnegative? fl) (assert-flonum fl) (negative? fl))
|
||
(define (flodd? ifl) (assert-iflonum ifl) (odd? ifl))
|
||
(define (fleven? ifl) (assert-iflonum ifl) (even? ifl))
|
||
(define (flfinite? fl) (assert-flonum fl) (not (inf? fl)))
|
||
(define (flinfinite? fl) (assert-flonum fl) (inf? fl))
|
||
(define (flnan? fl) (assert-flonum fl) (nan? fl))
|
||
|
||
(define (flmax fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply max flargs)))
|
||
|
||
(define (flmin fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply min flargs)))
|
||
|
||
(define (fl+ fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply + flargs)))
|
||
|
||
(define (fl* fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply * flargs)))
|
||
|
||
(define (fl- fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply - flargs)))
|
||
|
||
(define (fl/ fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply / flargs)))
|
||
|
||
(define (flabs fl) (assert-flonum fl) (abs fl))
|
||
|
||
(define (fldiv-and-mod fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(if (zero? fl2) (raise (make-assertion-violation)))
|
||
(let ((fx1 (inexact->exact fl1))
|
||
(fx2 (inexact->exact fl2)))
|
||
(call-with-values (lambda () (div-and-mod fx1 fx2))
|
||
(lambda (div mod) (values (exact->inexact div)
|
||
(exact->inexact mod))))))
|
||
|
||
(define (fldiv fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(if (zero? fl2) (raise (make-assertion-violation)))
|
||
(let ((fx1 (inexact->exact fl1))
|
||
(fx2 (inexact->exact fl2)))
|
||
(exact->inexact (quotient fx1 fx2))))
|
||
|
||
(define (flmod fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(if (zero? fl2) (raise (make-assertion-violation)))
|
||
(let ((fx1 (inexact->exact fl1))
|
||
(fx2 (inexact->exact fl2)))
|
||
(exact->inexact (modulo fx1 fx2))))
|
||
|
||
(define (fldiv0-and-mod0 fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(if (zero? fl2) (raise (make-assertion-violation)))
|
||
(let* ((fx1 (inexact->exact fl1))
|
||
(fx2 (inexact->exact fl2)))
|
||
(call-with-values (lambda () (div0-and-mod0 fx1 fx2))
|
||
(lambda (q r) (values (real->flonum q) (real->flonum r))))))
|
||
|
||
(define (fldiv0 fl1 fl2)
|
||
(call-with-values (lambda () (fldiv0-and-mod0 fl1 fl2)) (lambda (q r) q)))
|
||
|
||
(define (flmod0 fl1 fl2)
|
||
(call-with-values (lambda () (fldiv0-and-mod0 fl1 fl2)) (lambda (q r) r)))
|
||
|
||
(define (flnumerator fl)
|
||
(assert-flonum fl)
|
||
(case fl
|
||
((+inf.0) +inf.0)
|
||
((-inf.0) -inf.0)
|
||
(else (numerator fl))))
|
||
|
||
(define (fldenominator fl)
|
||
(assert-flonum fl)
|
||
(case fl
|
||
((+inf.0) 1.0)
|
||
((-inf.0) 1.0)
|
||
(else (denominator fl))))
|
||
|
||
(define (flfloor fl) (assert-flonum fl) (floor fl))
|
||
(define (flceiling fl) (assert-flonum fl) (ceiling fl))
|
||
(define (fltruncate fl) (assert-flonum fl) (truncate fl))
|
||
(define (flround fl) (assert-flonum fl) (round fl))
|
||
|
||
(define (flexp fl) (assert-flonum fl) (exp fl))
|
||
(define* (fllog fl #:optional fl2)
|
||
(assert-flonum fl)
|
||
(cond ((fl=? fl -inf.0) +nan.0)
|
||
(fl2 (begin (assert-flonum fl2) (/ (log fl) (log fl2))))
|
||
(else (log fl))))
|
||
|
||
(define (flsin fl) (assert-flonum fl) (sin fl))
|
||
(define (flcos fl) (assert-flonum fl) (cos fl))
|
||
(define (fltan fl) (assert-flonum fl) (tan fl))
|
||
(define (flasin fl) (assert-flonum fl) (asin fl))
|
||
(define (flacos fl) (assert-flonum fl) (acos fl))
|
||
(define* (flatan fl #:optional fl2)
|
||
(assert-flonum fl)
|
||
(if fl2 (begin (assert-flonum fl2) (atan fl fl2)) (atan fl)))
|
||
|
||
(define (flsqrt fl) (assert-flonum fl) (sqrt fl))
|
||
(define (flexpt fl1 fl2) (assert-flonum fl1 fl2) (expt fl1 fl2))
|
||
|
||
(define-condition-type &no-infinities
|
||
&implementation-restriction
|
||
make-no-infinities-violation
|
||
no-infinities-violation?)
|
||
|
||
(define-condition-type &no-nans
|
||
&implementation-restriction
|
||
make-no-nans-violation
|
||
no-nans-violation?)
|
||
|
||
(define (fixnum->flonum fx)
|
||
(or (fixnum? fx) (raise (make-assertion-violation)))
|
||
(exact->inexact fx))
|
||
)
|